
Effect of Using Adjusted Parameters, Local and Global Optimums, for
Phase Equilibrium Prediction on the Synthesis of Azeotropic
Distillation Columns
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ABSTRACT: We analyze the effect of using adjusted parameters, corresponding to local and global optimums, in the NRTL
thermodynamic model on the complete process synthesis (design, optimization and control) of homogeneous azeotropic
distillation columns. The adjusted parameters that correspond to a global optimum were obtained with simulated annealing
technique, while the adjusted parameters that correspond to a local optimum were taken from the Dechema Collection. Both sets
of parameters were used to design a conventional sequence, a side-stream column, and a Petlyuk sequence. These designs were
used as the initial solution to a multiobjective genetic algorithm with constraints handling, coupled to a processes simulator,
where the number of stages and heat duty of each column were considered as objectives; as a result, a set of optimal designs,
called the Pareto front, was obtained. Then, we chose some designs to analyze their theoretical control properties and the
dynamic performance. Results show remarkable differences in structure, energy consumption, control properties, and dynamic
performance of these schemes, depending on the use of adjusted parameters. The results show the importance of using the best
adjusted parameters available, which in our case correspond to global optimums obtained with the simulated annealing
technique.

1. INTRODUCTION

The separation of azeotropic mixtures is a difficult task due to
the presence of azeotropes, which generates distillation
boundaries in the composition space. The existence of
distillation boundary in azeotropic mixtures restricts the feasible
product separations for a given feed composition.1 Thereby, a
key step in the design of azeotropic distillation columns is the
choice of the thermodynamic model. At the same time, the
thermodynamic model must reproduce the best the phase
equilibrium both in all of the composition space and in the
azeotropic points along with the distillation boundaries;2 to get
this objective, the thermodynamic model must use proper
adjusted parameters. Usually, the thermodynamic models
employ adjusted parameters obtained from nonlinear regres-
sions of the experimental phase equilibrium data; for instance,
through the minimization of the difference between calculated
and measured vapor fraction. In most of the cases, the objective
function in nonlinear parameter estimation is nonconvex, and it
may have multiple local optima.3 Therefore, assuming that
experimental equilibrium data are thermodynamically consis-
tent, it is clear that the use of different methods to realize the
nonlinear regression will affect the resulting adjusted
parameters, and, as a consequence, the predicted phase
equilibrium. The high nonlinearity of the problem of
parameters estimation suggests that only global optimization
techniques should be used; however, in most of the cases, the

estimation is based on a least-squares or maximum likelihood
analysis.3 For instance, Gau et al.4 found that for some of the
equilibrium data published in the Dechema Collection, the
adjusted parameters are just local optima. This finding is very
important, because design, simulation, optimization, and even
control of the reactive and separation process rely on
estimation of thermodynamic properties, especially the phase
equilibrium. Even thermodynamic information is critical for the
development and improvement of all chemical process
technologies.5 Thus, the calculation of adjusted parameters
must be made with a robust technique for obtaining the global
optimum, because the resulting parameters best fit the
experimental data. The use of parameters that correspond to
a global optimum then is more reliable, because it ensures that
the phase equilibrium prediction is closer to the experimental
data. Several works have been focused on studying the effect of
the thermodynamic uncertainties on separate stages of the
process synthesis, as will be detailed next.
In 1993, Reed et al.6 studied the effect of uncertainties in

thermodynamic data and model parameters on calculated
process performance. They found significant changes in the
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process variables when reasonable uncertainties were applied to
interaction parameters of an equation of state, in pure
component and binary interaction.
Later, Vasquez and Whiting7 studied the effects of errors,

both systematic and random, in the design and simulation of
chemical processes; they estimated the adjusted parameters
using regression methods. Their objective was identifying what
kind of error is more significant in the process. In a later work,
they analyzed the uncertainty and sensitivity of thermodynamic
models in the design and simulation of industrial processes,
using equal probability sampling approach.8 Also, in the same
year, Xin and Whiting9 showed that the design of chemical
processes is significantly sensitive to the parameter uncertain-
ties.
Moreover, Xin et al.10 used the least-squares minimization

approach to get kinetic parameters and binary interaction
parameters. They weighted the minimization approach using
experimental variances to get optimum parameters. Their
results show that the use of experimental variances to weight
the objective function does not necessarily generate optimum
parameters, affecting the estimation of thermodynamic proper-
ties.
In 2004, Vidaurre et al.11 analyzed the robustness of

nonlinear regression methods under uncertainty, in the
estimation of parameter for kinetic models. The results show
that the performance of regression procedures can be very
sensitive to data uncertainty; this affects the validity of the
parameters obtained, and also the estimation of thermodynamic
properties. In the problem of reactive azeotropes, Doherty et
al.12 showed the effect of the uncertainty in the equilibrium
constant of the reaction on different reaction schemes; this will
affect the modeling of reactive and phase equilibrium of the
mixture.
On the other hand, Gutieŕrez-Antonio et al.2 studied the

effect of using different thermodynamic models in the design of
homogeneous azeotropic distillation columns; their results
show that there are significant differences in the number of
stages, even 87 stages. They suggested the use of NRTL model
for estimation of phase equilibrium properties in azeotropic
mixtures, both homogeneous and heterogeneous. The adjusted
parameters used in the different thermodynamic models were
taken from the Dechema Collection.
In 2009, Gutieŕrez-Antonio et al.13 proposed the use of

particle swarm optimization and simulated annealing to get
adjusted parameters of NRTL solution model in homogeneous
azeotropic mixtures. Despite that both methods are reliable for
parameter estimation, it appears that the simulated annealing
technique is the most suitable. Later, Bonilla-Petriciolet et al.14

used simulated annealing to calculate homogeneous azeotropes
in reactive and nonreactive mixtures. They also concluded that
simulated annealing is a robust strategy to calculate the global
adjusted parameters in azeotropic mixtures with or without
chemical reactions.
As can be seen, several works have focused on studying the

effect of the thermodynamic uncertainties for the phase
equilibrium calculation, on separate stages of the process
synthesis (considering the stages of design, simulation,
optimization and control). To our knowledge, no formal
analysis has been made to study the effect of these uncertainties
on the complete process synthesis, and knowing how these
uncertainties passed from one stage to another. Moreover, no
formal analysis has been made to study the effect that the use
adjusted parameters, which can be local or global optimum,

have on process synthesis. Usually, in the synthesis of chemical
process, we select a thermodynamic model, taking a set of
adjusted parameters; these thermodynamic data are used to
design, simulate, optimize, and perform control studies to
analyze a process from an integral point of view. The results
give information about energy requirements, capital costs, and
dynamic performance of the chemical process, and this
information is used to make decisions about what sequences
are feasible to implement. Thus, the adjusted parameters are of
great importance, because they will affect the conclusions with
respect to the feasibility of a chemical process. Therefore, the
study of the effects that can be passed from one stage to
another is very important, because it allows observing how the
uncertainties can be enhanced and conducted to schemes with
bad performance or elevated energy demand.
Thus, in this work, we analyze the effect of using adjusted

parameters, which correspond to local and global optimum, for
phase equilibrium calculation on the complete process synthesis
of azeotropic distillation sequences. We select the NRTL model
for phase equilibrium calculations of the selected azeotropic
mixtures. The adjusted parameters, which correspond to a
global optimum, for the NTRL model are calculated with the
simulated annealing technique, because it has shown its high
reliability in this kind of computations,13,14 while the adjusted
parameters, which correspond to a local optimum, are taken
from the Dechema Collection. Considering these two sets of
parameters, we design a conventional sequence, a side-stream
column, and a Petlyuk sequence for the separation of
homogeneous azeotropic mixtures. The resulting designs are
optimized through a multiobjective genetic algorithm with
constraints handling,15 which is coupled to the Aspen Plus
processes simulator; this ensures that all results generated
consider the complete model of the distillation sequences.
From the Pareto fronts generated, we selected some designs to
analyze their theoretical control properties and dynamic
performance. Results show remarkable differences in structure,
energy consumption, control properties, and dynamic perform-
ance of these schemes, as a consequence of using global or local
adjusted parameters.

2. ESTIMATION OF ADJUSTED PARAMETERS

The equilibrium between vapor and liquid phases in a c
multicomponent system implies that temperature, T, pressure,
P, and the chemical potential of each component i must be the
same in both phases. At low pressure, the vapor−liquid
equilibrium conditions can be simplified, because the fugacity
coefficients of pure components nearly cancel each other, and
Poynting corrections usually are very close to unity. Therefore,
the vapor−liquid equilibrium, VLE, for a multicomponent
system can be modeled with:

γ = =x P y P i cfor 1, 2, ...i i i i
o

(1)

where γi is the activity coefficient of component i, Pi
o is the

vapor pressure of pure component i, and xi and yi are the
equilibrium mole fractions at the liquid and vapor phase,
respectively. Using eq 1, the nonideal behavior is described
solely by the liquid-phase activity coefficient. Therefore, the
objective function commonly used for vapor−liquid equili-
brium data modeling is given as:
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where γi
exp and γi

calc are the experimental and calculated values
for the activity coefficient of component i, and ndat is the
number of experimental data used for parameter estimation,
respectively. This objective function weights the errors in small
and large quantities equally during parameter estimation. In
addition, the Dechema Collection employed this objective
function for determining the adjustable parameters of
thermodynamic equations for VLE data modeling. Therefore,
eq 2 has been used for VLE data fitting and for comparison
purposes with results reported in the Dechema Collection.
For the case of complete vapor−liquid equilibrium data (i.e.,

x, y and P at constant T, or x, y and T at constant P), excess
Gibbs energy equations are widely applied for phase
equilibrium. Given vapor−liquid equilibrium measurements
and assuming an ideal vapor phase, the experimental values for
the activity coefficients can be calculated from experiments and
using eq 1. There are several local composition models for the
calculation of liquid-phase activity coefficients. Particularly, the
NRTL equation is a flexible local composition model that can
be used for the correlation of γi, and for representing complex
vapor−liquid equilibrium behaviors in multicomponent sys-
tems. Note that this model usually offers a better performance
for VLE data modeling than those obtained with UNIQUAC or
Wilson equations. In fact, our preliminary calculations indicated
that the NRTL equation is proper for modeling the
thermodynamic behavior of systems used as case studies in
this Article; it is worth mentioning that the approach presented
in this work can be performed on other thermodynamic
models.
For a binary mixture, the NRTL model has three adjustable

parameters: parameters: A12 = g12 − g22, A21 = g21 − g11, and
the nonrandomness factor α12 = α21; these parameters are
estimated by minimizing eq 2. Note that the third parameter
α12 can be treated as adjustable, but several authors have
suggested that it should be fixed between 0.2 and 0.47. We will
show that this choice is very important, due to that it may cause
qualitative errors in the prediction of azeotropic states.
On the other hand, several studies have shown that the

highly nonlinear form of local composition models makes the
objective function in eq 2 nonlinear, potentially nonconvex
with several local minima points within the specified bounds.
Previous studies have shown that parameter estimation for
vapor−liquid equilibrium involves the solving of a global
optimization problem.4,16−18 In particular, the NRTL model,
due to its flexibility, can predict more phases that actually exist
in the system, if the parameter estimation procedure is not
performed adequately. This qualitative discrepancy occurs more
frequently in the vapor−liquid equilibrium modeling of
azeotropic mixtures.18 Therefore, it is necessary to apply a
suitable numerical strategy for reliably solving the parameter
estimation in VLE modeling. In this study, we used simulated
annealing for vapor−liquid equilibrium data fitting of binary
systems using the NRTL equation.
Simulated annealing is considered a robust stochastic

optimization strategy capable of solving global optimization
problems, and it has found several applications in science and
engineering, including thermodynamic calculations. Specifically,
simulated annealing simulates the process of slow cooling of
metals to achieve the minimum function value in a

minimization problem. The cooling phenomenon is modeled
by controlling a temperature-like parameter introduced with the
concept of Boltzmann probability distribution. By a controlled
temperature reduction as the algorithm proceeds, the
convergence of the algorithm can be controlled. We have
used the simulated annealing code developed by Goffe et al.,19

which is based on the algorithm developed by Corana et al.20

Note that previous studies have reported a robust performance
of simulated annealing for finding the global optimum solutions
for VLE data modeling.13,16

Therefore, we use simulated annealing to estimate the
adjusted parameters of NRTL solution model, through the
minimization of eq 2. Note that the formulation showed in eq 2
is equivalent to assuming that the standard error in the
measurement of γij is proportional to its value. Herein, it is
convenient to note that Esposito and Floudas21 have reported
that the parameter estimation problem for VLE data modeling
can be solved using a problem reformulation with convex
underestimating functions and a branch and bound procedure.
However, the problem reformulation and the development of
convex underestimators is model specific. On the basis of this
fact, the application of a black-box approach such as a stochastic
optimization method is more proper for facing this parameter
estimation problem, because this approach can be applied for
any thermodynamic model and without any concern of the
characteristics of the objective function. All experimental data
are taken from the Dechema Collection. We use the following
initial intervals for NRTL parameters in the global optimization
of the objective function: A12, A21 ∈ (−2000, 5000) and α12 ∈
(0.01, 10). Note that these initial intervals have been defined
using the results of previous studies,13,16 and they correspond
to a wide search space for finding the global optimal solution of
the parameter estimation problem.

3. DESIGN OF DISTILLATION SEQUENCES

Once both sets of adjusted parameters are available, we use
them to calculate the residue curve map of the azeotropic
mixtures and verify the feasibility of the separation. After the
feasibility has been verified, the distillation sequences are
designed.
The conventional distillation sequence is designed with the

method of minimum difference in composition.22 In this
method, algebraic material balances are solved from the
extreme to inside the distillation column, while the feed stage
is located where a minimum difference with respect to the feed
composition is found. The side-stream distillation column is
designed with the extension of the method of minimum
difference in composition.23 For the design of the Petlyuk
sequence, we use a methodology based on correlations made
from Pareto fronts of different mixtures and feed composi-
tions,24 which relate the easy separation index, ESI, ESI =
(KAKC)/(KBKB)), and the feed composition to calculate the
interconnection flows. The compositions of the interconnec-
tion flows are estimated as a function of the easy separation
index. The designs obtained with these shortcut methodologies
allow one to get a feasible initial solution for the optimization
process.

4. OPTIMIZATION OF DISTILLATION SEQUENCES

The optimization of the azeotropic distillation sequences
implies the simultaneously minimization of the heat duty of
the sequence, Qi, and the number of stages in each shell, Ni.
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These variables are in conflict between them, because to
minimize the heat duty, we have to increase the number of
stages, and vice versa. Because of this, we chose a multiobjective
stochastic technique to perform the optimization of the
distillation schemes. Therefore, we have 4, 2, and 3 objectives
for conventional, side-stream, and Petlyuk sequences, respec-
tively. As result of the multiobjective optimization, we obtain a
Pareto front, which is integrated for the set of solutions that are
not dominated and optimums of Pareto.25 Thereby, the Pareto
front consists of all optimal sequences from minimum reflux
ratio to minimum number of stages along with all designs
included between these objectives, which represent the best
trade-off between them. Also, the purities required in each
product stream must be reached. This optimization problem
can be expressed as:

=

⃗ ≥ ⃗

Q N f R F N N N N N

y x

min( , ) ( , , , , , , )

subject to
i i k k k i

k k

in, out, F S

(3)

where R is the reflux ratio, Fk is the interconnection flow k, NF
is the feed stage of the sequence, NS is the side-stream stage,
Nin,k and Nout,k are the numbers of stage where the
interconnection flow k comes and goes, and the vectors xk
and yk are the required and obtained purities, respectively. All of
these manipulated variables are considered if they applied for
each scheme.
The construction of the Pareto front of the azeotropic

distillation sequences is made through a multiobjective genetic
algorithm with handling constraints,15 based on the NSGA-II.26

Note that we have used a population-based method for the
design of azeotropic distillation because it offers a better
performance for solving multiobjective optimization problems
than that obtained with a multiobjective simulated annealing.
The constraints are handled with another multiobjective
optimization technique, which guides the search using the
concept of non dominance.27 For the optimization of the
distillation sequences, the number of individuals used was 500,
while the number of generations was 60, 80, and 100 for
conventional sequence, side-stream column, and Petlyuk
sequence, respectively. These parameters were obtained
through a tuning process until there is no significant change
in the Pareto front generated.

5. CONTROL PROPERTIES ANALYSIS
From the Pareto front, the design with the best compromise
between heat duty and number of stages is chosen, for each
scheme and set of adjusted parameters, to study their control
properties. Ulas et al.28 and Ulas and Diwekar29 have concluded
that a good dynamic behavior in distillation can only be
obtained if the effects of thermodynamic uncertainties are
minimized. The effect of uncertainties due to the usage of local
methods during the parameter estimation step in VLE
modeling propagated the dynamic response of the equipment.
It results in a lower product yield and a purity that is
significantly different from the specified purity on the distillate.
Hence, we highlight the importance of using good

thermodynamic parameters in the design of distillation
columns. This clearly impacts the dynamic response of the
distillation column and its control properties, and also links the
design stage with the control stage of a distillation column. We
then analyze first the theoretical control properties, with

singular value decomposition technique, and later the dynamic
performance at closed-loop.

5.1. Theoretical Control Properties. Theoretical control
properties of selected designs are evaluated using the SVD
technique, which can be defined as:

∑=G V W H
(4)

Here, G is the matrix target for SVD analysis and ∑ is a
diagonal matrix that consists of the singular values of G. The
singular values of the open-loop frequency function matrix of a
process at a given frequency are the gains of the process at this
frequency, in the directions of the corresponding input singular
vectors (as the input singular vectors form a basis in the input
space, the gain can be calculated in every direction). These
gains play an important role when performing controllability
analysis of a process, and for a complex analysis they must be
evaluated in all frequency domains. The Morari Resiliency
Index (MRI) is the smallest singular value (σ*) of the process
open-loop frequency function matrix. The larger is its value, the
more controllable is the process. If it is zero, this means that
there is an input direction where the gain is zero and the matrix
is not invertible. Condition number (γ*) is the ratio of the
largest and smallest singular values of the process open-loop
frequency function matrix. If it is large, then the matrix has
strong directionality, which means that the gains vary strongly
depending on input directions. Such a matrix is said to be ill-
conditioned. A large γ* means that the system is sensitive to
input and model uncertainty, and therefore the process is less
controllable. Systems with higher σ* values and lower γ* are
expected to show the best dynamic performance under
feedback control.

5.2. Dynamic Performance at Closed-Loop. The
dynamic performance at closed-loop was analyzed using the
criterion of minimization of the integral of the absolute error
(IAE). The control loops of the PID controller were established
as follows: the composition of volatile component in distillate
with reflux ratio in first column; the composition of the stream
that contains the azeotrope with the reflux ratio of the second
column (in case of direct conventional sequence) or with the
side-stream flow (in case of side-stream column and Petlyuk
sequence); and the composition of the heavy component with
the heat duty of the column. Once the control loops have been
established, the manipulated variable is disturbed in 0.5% of its
original value. A recursive dynamic simulation process then is
performed, varying integral time and gain values looking for the
minimization of IAE. It is worth mentioning that each
controller is analyzed separately.

6. CASES OF STUDY
We select as a study case the separation of two ternary
mixtures: M1, integrated by acetone, isopropanol, and water,
and M2, composed of methanol, isopropanol, and water. For
both mixtures, the feed stream has an equimolar composition,
and it is introduced as saturated liquid; the operation pressure
of all sequences is 30 psia. The required purities for acetone,
isopropanol, and water in their respective product stream are
0.90, 0.65, and 0.99, while the required purities for methanol,
isopropanol, and water in their respective product stream are
0.95, 0.64, and 0.99. These sequences are designed, optimized,
and controlled using two sets of adjusted parameters in the
NRTL solution model; the simulation in Aspen Plus is
performed in Radfrac module.
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7. DISCUSSION OF RESULTS
In this section, we present the analysis of the results generated
in stages of parameter estimation, design, optimization, and
control of the distillation sequences with adjusted parameters,
corresponding to local and global optimums, for NRTL model
solution, for both mixtures. From here, we will call SAP to the
adjusted parameters obtained with the simulated annealing
technique, and DCP to the adjusted parameters taken from the
Dechema Collection.
7.1. Mixture of Acetone−Isopropanol−Water. For the

mixture acetone−isopropanol−water, SAP and DCP are shown
in Table 1, where we observe that binary pairs isopropanol−

water and acetone−water have exactly the same values for SAP
and DCP; both binary pairs correspond to global optimums.
However, remarkable differences are found in the binary pair
acetone−isopropanol. For instance, the parameter A21 changes
from a negative value in DCP to a positive and big value with
SAP; also, the nonrandomness factor has changed. Note that
the nonrandomness factor, for binary pair acetone−water, has a
value of 0.5856; this value is higher than the suggested range
defined by several authors. This observation is important
because when the nonrandomness factor is used as an
adjustable parameter, without restricting its values to the
range suggested, the NRTL model predicts a thermodynamic
behavior that matches with the experimental data.14 Never-
theless, the change in these parameters for one binary pair does
not affect the prediction of the two azeotropic points presented
at 30 psia, as can be seen in Table 2. Because the prediction in

the azeotropic points has not changed, we calculate residue
curve maps, with DCP and SAP, to compare the prediction in
the entire composition space. Figure 1 shows the residue curve
maps, which present just small differences between them.
Considering the small differences in the prediction of phase
equilibrium with DCP and SAP, we can expect minor
differences in the design and control properties of the optimal
designs. Once the feasibility of the separation is verified, then
shortcut methodologies are used to get initial designs of all
sequences.

Figure 2 shows the Pareto fronts generated for each
sequence, with DCP and SAP; the objectives have been
grouped into two: total number of stages and total heat duty of
the sequence, for illustrative purposes. From Figure 2 we
observe that for all sequences, the front generated with SAP is
under the front generated with DCP. In general, optimal
designs with SAP show minor energy consumptions with
similar or less number of total stages, in comparison with those
with DCP. From the three sequences analyzed, the Petlyuk
sequence presents the minor energy consumption, followed by
the side-stream column, the energy requirements of which
match partially the Pareto front of the conventional direct
sequence.
From these Pareto fronts, we select three designs for each

sequence with the minor heat duty, the minor number of
stages, and an intermediate design between these extremes. The
selected designs are shown in Table 3, and they present notable
differences in the heat duty, Q, and total number of stages,
when using DCP or SAP. For the conventional direct sequence
with the same number of stages, the SAP design requires 94%
of the heat duty of the DCP design. This difference is small for
this sequence; nevertheless, in the side-stream column for a
similar number of stages, the SAP design consumes 34% of the
energy consumption of the DCP design. This result is quite
unexpected, considering that the prediction of the azeotropic
point is the same, and minimal differences are found in the
liquid−vapor equilibrium prediction. In the case of the Petlyuk
sequence for a similar number of stages, the SAP design
requires 80% of the energy required by DCP design. Basically,
the SAP designs require 6%, 66%, and 20% less energy than the
DCP designs, in the conventional direct, side stream, and
Petlyuk sequences, respectively. The found differences are
huge, considering that just one binary pair does not match
between DCP and SAP, and the components of this binary pair
do not form azeotropes. In the number of stages we observe the
same tendency, but the differences are very small. These results
show that the use of global (SAP) or local (DCP) adjusted
parameters significantly affects the design of conventional and
thermally coupled schemes.
Moreover, these selected designs were used to analyze the

theoretical control properties and the dynamic performance. It

Table 1. Adjusted Parameters for NRTL Model Solution
from Simulated Annealing and the Dechema Collection, for
the Mixture Acetone−Isopropanol−Water

adjusted
parameter

acetone (1),
isopropanol (2)

isopropanol (1),
water (2)

acetone (1),
water (2)

Dechema
Collection

A12 536.7280 39.8541 750.3181
A21 −97.8216 1659.2572 1299.3970
α12 0.3018 0.3255 0.5856

simulated
annealing

A12 402.8160 39.8541 750.3181
A21 9634.6100 1659.2572 1299.3970
α12 0.4195 0.3255 0.5856

Table 2. Azeotropic Points Composition with Adjusted
Parameters from Simulated Annealing and Dechema
Collection, for the Mixture Acetone−Isopropanol−Water

azeotrope Xacetone Xisopropanol Xwater

Dechema Collection binary 1 0.9606 0.0394
binary 2 0.6824 0.3176

simulated annealing binary 1 0.9606 0.0394
binary 2 0.6824 0.3176

Figure 1. Residue curve map of the mixture acetone−isopropanol−
water calculated with adjusted parameters from simulated annealing
and the Dechema Collection.
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is important to note that the design of the columns in the
module RADFRAC (Aspen Plus) employed SAP and DCP;
this file, which contains thermodynamic parameters, is exported
to Aspen Dynamic. Using dynamic simulations generated either
open-loop or closed-loop, we obtain the response needed to be
used in the technique of singular value decomposition (the
transfer function matrix generated by using step changes in the
manipulated variable and recording the dynamic behavior of the
three product compositions, A−C; it is worth mentioning that
the dynamic responses can be adjusted to first or parallel
processes) or can perform tuning of the PI controllers to
generate the responses that minimize IAE criteria.
For the optimal designs, displayed in Table 3, with similar

number of stages, we calculate the condition number and
minimum singular values for the whole range of frequency with

DCP and SAP; see Figures 3 and 4. For the conventional direct
sequence, the condition number and the minimum singular
values are practically the same with both sets of parameters in
the whole range of the frequency. For the side-stream column,
we have a similar situation, for both sets of parameters in the
whole range of frequency. The principal difference is observed
in the Petlyuk sequence, where the minimum condition
number is low in the whole range of frequency with DCP,
and at intermediate frequencies with SAP; the minimum
singular value are major at low frequencies with DCP, and
major at intermediate frequencies with SAP, but in a smaller
interval. The graphics suggest that the Petlyuk sequence with
SAP is more sensitive to disturbance and modeling errors and
less controllable than the Petlyuk sequence with DCP.
In general, the conventional direct sequence is the less

sensitive sequence for disturbances and modeling errors, and
the more controllable for DCP and SAP in the whole range of
frequency. A similar behavior can be expected from Petlyuk
sequence when DCP is used, while the Petlyuk sequence with
SAP presents worse control properties than the Petlyuk
sequence with DCP. The side-stream column offers the worst
conditioning properties against model uncertainties and process
disturbances than the other arrangement at low frequencies, for
DCP and SAP.
Tables 4 and 5 show the results obtained in a closed-loop

analysis, which are consistent with those obtained from the
singular value decomposition technique. The minimum values
for IAE for the loops of components A and C are obtained in
the optimal designs with DCP, for all sequences, while the
minimum value of IAE for the loop of component B is observed
in optimal designs with SAP for all sequences. It is worth
mentioning that the more complicated loop is that where the
component B is controlled, because the azeotrope is extracted
there. If we analyze the IAE for the optimal designs with DCP,
we found that the minimum values for the loops of components
A and B are observed in conventional direct sequence and
Petlyuk sequence, while the minimum values for the loop of
component C are observed in Petlyuk sequence and side-
stream column. According to this analysis, the best scheme is
the Petlyuk sequence, because it presents the best or the second
best value for the minimum IAE in all control loops; the second
best scheme is the conventional direct sequence, because it

Figure 2. Pareto fronts of (a) conventional direct sequence, (b) side-
stream column, and (c) Petlyuk sequence with adjusted parameters
taken from the Dechema Collection and those calculated with
simulated annealing, for the mixture acetone−isopropanol−water.

Table 3. Selected Designs from the Pareto Fronts of
Conventional Direct Sequence, Side-Stream Column, and
Petlyuk Sequence, for the Mixture Acetone−Isopropanol−
Water

Dechema Collection simulated annealing

N Q, Btu/h N Q, Btu/h

Conventional Direct Sequence
minor heat duty 29 8 693 037 28 7 716 505
similar number of stages 25 8 942 546 25 8 448 570
minor number of stages 22 13 137 574 21 14 123 565

Side-Stream Column
minor heat duty 26 13 790 826 22 5 309 621
similar number of stages 25 14 247 716 21 5 902 515
minor number of stages 23 15 639 844 20 7 121 893

Petlyuk Sequence
minor heat duty 48 2 955 292 41 2 411 171
similar number of stages 44 3 134 434 43 2 516 848
minor number of stages 58 6 361 508 49 2 518 394
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presents the best or the second best value for the minimum IAE
in at least two control loops.
On the other hand, if we analyze the IAE for the optimal

designs with SAP, we found that the minimum values for loops
of components B and C are observed in the side-stream column
and Petlyuk sequence, while the minimum values for loop of
component A is observed in conventional direct sequence and
side-stream column. According to this analysis, the best scheme
is the side-stream column, because it presents the best or the

second best value for the minimum IAE in all control loops; the
second best scheme is the Petlyuk sequence, because it presents
the best or the second best value for the minimum IAE in at
least two control loops.
As can be seen, for this case the conclusions are slightly

different. If we use DCP, the best sequences are the Petlyuk
sequence and the conventional direct sequence; if we use SAP,
the best sequences are the side-stream column and the Petlyuk
sequence. An important point to emphasize is that according to

Figure 3. Condition number for selected designs with DCP and SAP, for the mixture acetone−isopropanol−water.
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Table 3, the Petlyuk sequence has the minimum energy
requirement in the designs generated with DCP and SAP.
However, the Petlyuk column designed using DCP shows
slightly better control properties (minimum IAE values in all
control loops) under open- and closed-loop analysis than the
Petlyuk column using SAP (minimum IAE values in two
control loops).
In brief, the use of adjusted parameters, corresponding to a

global optimum, leads to optimal designs with minor energy

requirements, for similar or less number of total stages, in
comparison with optimal designs calculated with local adjusted
parameters. This is due to that the global adjusted parameters
reproduce better the experimental data, improving the
prediction of phase equilibrium. With a better representation
of phase equilibrium, we can generate adequate designs,
avoiding oversizing the equipment. Also, the control properties
under open and closed analysis can be considered as similar.

Figure 4. Minimum singular value for selected designs with DCP and SAP, for the mixture acetone−isopropanol−water.
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7.2. Mixture of Methanol−Isopropanol−Water. The
SAP and DCP for the mixture methanol−isopropanol−water
are shown in Table 6, where we observe that the adjusted
parameters in the binary pair isopropanol−water have exactly
the same values. On the other hand, remarkable differences are
found in the binary pairs methanol−isopropanol and
methanol−water. In the binary pair methanol−isopropanol,
the parameter A21 changes from a negative value, DCP, to a
positive and big value, SAP; a similar situation occurs in
parameter A12 of the binary pair methanol−water. However,
the observed changes in the nonramdomness factors of both
binary pairs attract the most attention: their values are
considerably higher than the suggested range defined by several
authors; this observation is important because when the
nonrandomness factor is used as adjustable parameter, without
restricting its values to the range suggested, the NRTL model
predicts a thermodynamic behavior that matches with the
experimental data.14 Nevertheless, the change in these
parameters does not affect the calculated composition of the
azeotropic point presented at 30 psia, as can be seen in Table 7.
Because the prediction in the azeotropic points has not
changed, we calculate residue curve maps with DCP and SAP
to compare the prediction in the entire composition space.
Figure 5 shows the residue curve maps, which present just small
differences between them. Considering that the azeotropic
point’s compositions are the same, and there are just light
differences in the residue curve maps, we expect minor
differences in the design and control properties of the optimal
designs.

Once the feasibility of the proposed separation is verified,
then the shortcut methodologies are used to get initial designs
of all sequences, including a dividing wall column, for the
optimization strategy.
Figure 6 shows the Pareto fronts generated for each sequence

with DCP and SAP, where we observe that for all sequences,
the front generated with SAP is under the front generated with
DCP. In general, optimal designs with SAP have minor energy
consumptions in comparison with the optimal designs with
DCP; these lower values are accompanied by similar or less
number of total stage in the sequence. From the four sequences
analyzed, it can be seen that the dividing wall column presents
minor energy consumption followed very close by the Petlyuk
sequence; after them, we have the conventional direct
sequence, for which maximum energy requirements match
partially the Pareto front of the side-stream column.
From these Pareto fronts, we select three designs for each

sequence with the minor heat duty, the minor number of
stages, and an intermediate design between these extremes. The
selected designs, shown in Table 8, present notable differences
in the heat duty, Q, and total number of stages, when using
DCP or SAP. For the conventional direct sequence, with the
same number of stages the SAP design requires 89% of the heat

Table 4. Integral Absolute Error (IAE) Values for Selected
Designs with Adjusted Parameters from the Dechema
Collection, for the Mixture Acetone−Isopropanol−Water

sequence
IAE, light

component loop
IAE, intermediate
component loop

IAE, heavy
component loop

conventional 1.35 × 10−5 3.30 × 10−5 2.01 × 10−5

side-stream
column

9.84 × 10−6 3.29 × 10−4 2.14 × 10−6

Petlyuk
sequence

2.13 × 10−5 2.71 × 10−5 1.02 × 10−5

Table 5. Integral Absolute Error (IAE) Values for Selected
Designs with Adjusted Parameters from Simulated
Annealing, for the Mixture Acetone−Isopropanol−Water

sequence
IAE, light

component loop
IAE, intermediate
component loop

IAE, heavy
component loop

conventional 1.40 × 10−5 3.28 × 10−5 2.02 × 10−5

side-stream
column

2.23 × 10−5 2.16 × 10−5 9.97 × 10−6

Petlyuk
sequence

3.28 × 10−5 2.54 × 10−5 1.49 × 10−5

Table 6. Adjusted Parameters for NRTL Model Solution from Simulated Annealing and the Dechema Collection, for the
Mixture Methanol−Isopropanol−Water

adjusted parameter methanol (1), isopropanol (2) isopropanol (1), water (2) methanol (1), water (2)

Dechema Collection A12 219.5610 39.8541 −48.6725
A21 −250.9962 1659.2572 610.4032
α12 0.3047 0.3255 0.3001

simulated annealing A12 −95.0591 39.8541 163.2375
A21 1260.3568 1659.2572 427.5462
α12 1.8626 0.3255 0.7686

Table 7. Azeotropic Points Composition with Adjusted
Parameters from Simulated Annealing and the Dechema
Collection, for the Mixture Methanol−Isopropanol−Water

azeotrope Xisopropanol Xwater

Dechema Collection binary 0.6824 0.3176
simulated annealing binary 0.6824 0.3176

Figure 5. Residue curve map of the mixture methanol−isopropanol−
water calculated with adjusted parameters from simulated annealing
and the Dechema Collection.
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duty of the DCP design. This difference is significant for this
sequence; nevertheless, in the side-stream column for a similar

number of stages, the SAP design consumes just 77% of the
energy consumption of the DCP design. The found differences
are meaningful, considering that prediction of the azeotropic
point is the same, and minimal differences are found in the
liquid−vapor equilibrium prediction. For the dividing wall
column with a similar number of stages, the SAP design
requires 98% of the energy required by DCP design. Basically,
the SAP designs require 11%, 33%, and 2% less energy than the
DCP designs, in the conventional direct, side-stream, and
dividing wall column, respectively. The found differences in
heat duties are huge, while in the number of stages we observe
the same tendency, but the differences are very small. These
results show that the use of global (SAP) or local (DCP)
adjusted parameters significantly affects the results in design,
simulation, and optimization of conventional and thermally
coupled schemes.
The selected designs, which are shown in Table 8, were used

to analyze the theoretical control properties and the dynamic
performance. After the optimal designs were obtained, open-
loop dynamic simulations were carried out in Aspen Dynamics
to obtain the transfer function matrix. For the case study
considered here, the transfer function matrix was generated by
using step changes in the manipulated variable and recording
the dynamic behavior of the three product compositions (A−
C). It is worth mentioning that the dynamic responses can be
adjusted to first or parallel processes.
For the optimal designs displayed in Table 8 with similar

number of stages, we calculate the condition number and
minimum singular values for the whole range of frequencies
with DCP and SAP, Figures 7 and 8. In the conventional direct
sequence, we observed that the optimal designs with SAP
present the smallest condition number and the greater
minimum singular values, in the whole range of the frequency.
For the side-stream column, we observed a smaller condition
number for the designs with DCP, but slightly major minimum
singular values in the design with SAP, in the whole range of
frequency. For the Petlyuk sequence and the dividing wall
column, we observe that the optimal designs with SAP present
the minor condition number and the greater minimum singular

Figure 6. Pareto fronts of (a) conventional direct sequence, (b) side-
stream column, and (c) Petlyuk sequence with adjusted parameters
taken from the Dechema Collection and those calculated with
simulated annealing, for the mixture methanol−isopropanol−water.

Table 8. Selected Designs from the Pareto Fronts of
Conventional Direct Sequence, Side-Stream Column, and
Petlyuk Sequence, for the Mixture Methanol−Isopropanol−
Water

Dechema Collection simulated annealing

N Q, Btu/h N Q, Btu/h

Conventional Direct Sequence
minor heat duty 62 6 763 069 43 6 882 831
similar number of stages 38 8 133 277 38 7 306 284
minor number of stages 30 14 483 618 30 13 621 172

Side-Stream Column
minor heat duty 32 13 415 186 33 10 376 497
similar number of stages 28 15 287 353 28 11 917 980
minor number of stages 25 34 141 276 22 37 054 652

Petlyuk Sequence
minor heat duty 59 6 412 989 54 5 508 571
similar number of stages 53 6 596 043 53 6 921 930
minor number of stages 47 10 353 573 41 7 821 727

Dividing Wall Column
minor heat duty 91 4 840 141 61 5 385 033
similar heat duty 67 6 087 828 61 5 995 038
minor number of stages 66 6 821 949 57 8 920 228
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value. These graphics suggest that the dividing wall column and

the Petlyuk sequence with SAP are less sensitive to disturbance

and modeling errors and less controllable than the dividing wall

column and the Petlyuk sequence with DCP. Similar control

properties can be expected for side-stream column for both sets

of parameters, while better control properties are expected for

conventional direct sequence with SAP in comparison to that

with DCP.

Figure 7. Condition number for selected designs with DCP and SAP, for the mixture methanol−isopropanol−water.
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In general, the dividing wall column is the less sensitive

sequence for disturbances and modeling errors, and the more

controllable for DCP and SAP in the whole range of frequency.

A similar behavior can be expected from the Petlyuk sequence

when SAP is used, while the Petlyuk sequence with DCP

presents slightly worst control properties than the Petlyuk

sequence with SAP. In this case, the conventional direct

sequence offers the worst conditioning properties against

Figure 8. Minimum singular value for selected designs with DCP and SAP, for the mixture methanol−isopropanol−water.
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model uncertainties and process disturbances than the other
arrangement at low frequencies for DCP, while with SAP the
worst conditioning properties are presented by the side-stream
column.
Tables 9 and 10 show the results obtained in a closed-loop

analysis, which are consistent with those obtained from the

singular value decomposition technique. In general, the
minimum values for IAE for the loops of components B and
C are obtained in the optimal designs with SAP, for three
sequences, while the minimum value of IAE for loop of
component A is observed in optimal designs with DCP for
three sequences too. It is worth mentioning that the more
complicated loop is that where component B is controlled,
because the azeotrope is extracted there; again, this control
loop has minor IAE values when SAP is used, as in the first
analyzed case.
If we analyze the IAE for the optimal designs with DCP, we

found that the minimum values for loops of components A, B,
and C are observed in the side-stream column, conventional
direct sequence, and dividing wall column, respectively. In the
optimal designs with SAP, the minimum values for loops of
components A and C are observed in the side-stream column,
while the loop of component B has the minimum value in the
conventional direct sequence. According to this analysis, in
general the minimum values of IAE are observed in the
conventional direct sequence and the dividing wall column with
SAP and DCP.
An important point to highlight is that according to Table 3,

design with minimum energy requirement in the designs
generated with DCP and SAP is the dividing wall column.
Additionally, the dividing wall column shows good control
properties under open- and closed-loop analysis. For this
particular case of study, the design of dividing wall column is
independent of the parameters used in the thermodynamic
model, because in both cases the best option is dividing wall
configuration.

8. CONCLUDING REMARKS

A formal analysis to study the effect of the adjusted parameters
of model NRTL on the design, optimization, and control of
azeotropic sequences has been presented. Results show that the
use of global adjusted parameters leads to optimal designs with
minor energy requirements, for similar or less number of total
stages, in comparison with optimal designs calculated with local
adjusted parameters. Also, the control properties under open
and closed analysis are slightly better when optimal adjusted
parameters are used. Despite that some discrepancies in the
designs with both sets of parameters were expected, results
show that small differences in the phase equilibrium analysis are
translated and maximized in the later stages of design,
optimization, and control. This is due to that the global
adjusted parameters reproduce better the experimental data,
improving the prediction of phase equilibrium. With a better
representation of phase equilibrium, we can generate adequate
designs, avoiding oversizing the equipment. For the analyzed
cases, the energy consumptions differ until 66%, even when the
prediction of azeotropic points does not change. Also, the
control properties deteriorate slightly just by changing the
parameters used.
The huge variation in energy savings and slightly differences

in control properties represent a serious problem, because new
separation schemes and/or improvement of existing plants are
evaluated through design and control studies, principally, and
they determine if the structure or improvement can be
implemented in practical applications.
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