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ABSTRACT: This work introduces a multiobjective optimization approach to integrate the design and control of
multicomponent distillation sequences. The evaluation of the control properties and the design of the distillation systems
were evaluated through the calculation of the condition number and the total annual cost of each design, respectively. Three
distillation systems, including the direct sequence, the indirect sequence, and the dividing wall column along with three mixtures
with representative ease of separation index (ESI) values and three different feed compositions, were studied. In addition, in a
posterior stage to the optimization process, the Eco-indicator 99 for each design was estimated to quantify the environmental
impact of the distillation systems. The results offer the trade-offs between the control properties and the design, which is shown
through Pareto optimal solutions that enable selection of the solutions that establish the proper balances between both
objectives.

1. INTRODUCTION

Historically, and also common today, the chemical process
design and the evaluation of the control properties are two
problems approached and solved in a separated and sequential
way. In a first stage, the process is designed in order to achieve
the aims of the design (e.g., the product specifications that meet
the requirements of the markets), and in a second stage the
control aspects are analyzed and solved. This sequential
methodology may present some deficiencies such as dynamic
constraint violations, process overdesign, or underperformance,
and a robust performance is not guaranteed.1 Another
disadvantage is related to the way in which the process
decisions influence the control operation of the process; in a
realistic scenario stated by a competitive market, the chemical
processes must operate as flexibly as possible in order to adapt
in an adequate way to the changes in the product specifications,
the demand of consumers, and the variations in the raw
materials. In this context, the utilization of appropriate
strategies for integrating design and control would allow the
suitable operation of the process by improving the profitability
through the increment of the throughput production and also
the increment in the yield of high value products, besides the
minimization in the energy consumption, pollution, and as a
direct consequence the environmental impact. Therefore, the
development of the idea of integrating design and control may
produce significant economic benefits in addition to improve-
ments in the operation of processes through the incorporation
of the assessment of the process dynamics in the initial stages of
the design. These interactions between the design and control
have been documented in past decades.2−8 The ideas developed
in these works have triggered some of the literature to sketch a
general methodology for integrating design and control based
on different methods to assess the dynamic properties of the
design, for example index-based methods,9−11 dynamic
optimization-based methods,12−16 robust metrics-based meth-
ods,17−22 and recently probabilistic-based methods.23 Most of

these methodologies approach the integration of design and
control; however, only a few have been applied to the
simultaneous integration of large scale process such as
multicomponent distillation systems.
In general, the integration of design and control becomes an

optimization problem that represents a significant computa-
tional burden. Therefore, global optimization methods are
desirable in order to solve this problem. These methods can be
classified as deterministic global optimization methods and
stochastic global optimization methods; the first class offers a
guarantee of finding the global optimum of the objective
function, provided that the objective function is convex.
However, strategies in this class often require high computa-
tional time (generally more time than stochastic methods) and,
in some cases, a problem reformulation is needed. The use of
rigorous design and thermodynamic models leads to very large
nonconvex models, which are very difficult to converge.
Moreover, taking into account structural and design decisions
leads to the inclusion of integer variables, further increasing the
difficulty of solving the model. Finally, additional convergence
problems are generated when discontinuous functions, such as
complex cost functions, are introduced in the model. Recently,
some deterministic methodologies that integrate design and
control have been developed.24−26 On the other hand,
stochastic global optimization methods allow obtaining good
solutions in moderate computational time. In addition they are
very flexible to implement and easy to use, and additional
transformations of the original problem are avoided. This is
particularly interesting because medium and large scale
optimization problems can be implemented in a reasonable
computational time. One of the stochastic methods that has
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received considerable attention is differential evolution (DE),27

which was first introduced for solving single objective
optimization problems over a continuous domain. Recently,
Srinivas and Rangaiah28 have proposed an improvement to the
usual DE steps: it consists of the inclusion of the concept of
tabu search.29 The tabu algorithm allows keeping a record of
recently visited points to avoid further revisiting of explored
areas. In particular, Srinivas and Rangaiah28 utilized the concept
of a tabu list (TL) with DE, which avoids revisiting points or
solutions during the optimization process and reducing this way
the computational time. This algorithm was improved by
Sharma and Rangaiah,30,31 and it was identified as MODE-TL
(Multi-Objective Differential Evolution with Tabu List); in this
way, this algorithm is capable of dealing with multiobjective
optimization problems, in particular with large scale chemical
engineering optimization problems.32−35 It should be noticed
that a multiobjective methodology is highly desirable in a
design and control integration approach as the trade-offs
between controllability and design aspects can be established.
Therefore, in this paper is presented a multiobjective

optimization approach for multicomponent distillation sequen-
ces integrating design and control issues. The controllability is
evaluated through the calculation of the condition number of
the decomposition of the relative gain matrix of the distillation
systems in an operating nominal point, whereas the design is
evaluated through the estimation of the total annual cost of the
distillation sequences studied; namely, these are the objective
functions to be simultaneously minimized in the multiobjective
optimization approach. This paper is organized as follows:
section 2 provides the formulation of the multiobjective
optimization design and control integration problem, section
3 shows the case studies, section 4 presents the results and the
discussion, and finally section 5 presents the conclusions.

2. FORMULATION OF THE MULTIOBJECTIVE
OPTIMIZATION PROBLEM OF DESIGN AND
CONTROL OF DISTILLATION SEQUENCES

The integration of design and control in multicomponent
distillation systems leads to a large scale optimization problem.
Therefore, the aim of this paper is to introduce a suitable
optimization strategy for simultaneously relating both objec-
tives (design and control). In this work, the condition number
has been established as the index to evaluate the controllability
properties; the condition number has been utilized as a
qualitative assessment of the control properties of a
design.9,36−38 The calculation of the condition number has
been carried out through the singular value decomposition of
the relative gain matrix of the design in the nominal point, e.g.,
for the design that fulfills the restrictions, previous to the
calculation of the condition number, the singular values are
obtained. For example, consider the mathematical expression
eq 1, which represents the relative gain matrix of a linear
system.

= ΣK W VT (1)

where W and V are unitary matrixes and Σ is a matrix whose
diagonal elements are the singular values σ. Assuming that K is
not singular, then the condition number of K, γ, is a positive
number which relates to the minimum singular value, σ*, and
the maximum singular value, σ*, being niether of these two
zero. The condition number, γ, can be estimated as in eq 2:

γ σ
σ

= *

* (2)

Large values of σ* and small values of σ* are desirable so that
the process may assimilate the perturbations without system
destabilization.6 Therefore, lower values of the condition
number of a design are preferable over upper values. In this
study the condition number of the relative gain matrix obtained
in an open loop control strategy for each design is estimated by
generating the relative gain matrix in a nominal state of each
distillation sequence design. The elements of this matrix are
calculated through the introduction of perturbations in the
manipulated variables, which are the reflux ratio and the
reboiler duty for the conventional sequences studied, and the
reflux ratio, the reboiler duty, and the sidestream molar flow
rate for the thermally coupled dividing wall distillation column
(see Figure 1). The magnitude of the perturbations was defined
as a 0.5% positive change in the values of the manipulated
variables in the nominal state; the level of these perturbations is
low enough that it is assumed the response of the system can be
approached as a first order response. It is very important to
note that the gain matrix is scaled to take into account
variations of different orders of magnitude of the perturbations.
One drawback of the singular value decomposition is the fact

that the singular values depend on the system of units used.
Applying the singular value decomposition to relative gain
matrix will include the effects of such units; therefore, it is
important to use a scaling method to remove this dependency
and provide reliability in the results as well as a physical
meaning. In order to approach this issue, some authors (see, for
instance, refs 6, 39, and 40) have proposed scaling methods for
the manipulated variables and the control variables. For the
distillation sequences in this study there are three important
control variables; such variables are the molar purities of each
of the components of the corresponding ternary mixture, and
these are naturally bounded between 0 and 1. Manipulated
variables are used for each distillation sequence; they are the
reflux ratio and the reboiler duty for the conventional
sequences, and the reflux ratio, the reboiler duty, and the
sidestream molar flow rate for the dividing wall distillation
column. These manipulated variables have units and are not
bounded naturally. To eliminate this drawback, it is proposed
to limit the manipulated variables considering that the
maximum aperture that can reach the control valves is twice
the nominal value of the steady state; therefore, in principle the
valves are open to 50%. This implies that, for the relative gain
matrix, the step change is implemented in the manipulated
variable to be divided by twice the steady state to have the same
range of variation in both the closing and opening operations of
the control valves. This allows for a physical interpretation to
the way of scaling of the manipulated variables, to link the
amount of change of the manipulated variables with the
magnitude of change of the position of the corresponding valve
stem, which can only vary between 0 and 100% open (0 and 1).
With this form of scaling it is achieved simultaneously
dimensionless standardization and manipulated variables; the
term (1/2)p has been included in eq 3 in order to achieve this
purpose.
In the case of distillation columns, the selection of

manipulated variables, for perturbation in the gain matrix, are
fairly well established and used successfully in practice, at least
for conventional columns. Typically on a distillation column
there are four control handles: distillate flow rate, reflux flow
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rate, bottoms flow rate, and the heat rate into the reboiler.
However, material balance usually dictates two of these handles
must be used to control the level in the accumulator tank and
the level in the base of the column. That leaves only two
variables which can be manipulated, e.g., the reflux ratio. This,
and other meaningful ratios, can be used to replace the direct
manipulation of the four control handles. The reflux ratio and
the heat rate into the reboiler (reboiler duty) have been found
as some of the best manipulated variables in control studies
(see, for instance, refs 41 and 42). Equation 3 represents the
relative gain matrix for the direct distillation sequence.

=
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The elements in the left side of eq 3, Kij, are the relative gain
matrix. Moreover, the elements of the first row in the right side
correspond to the differences among the molar purities of
component A in the nominal state, xA

sp, and the molar purities
after the perturbations, p, are introduced, xA

R1 is the molar purity
of component A after the perturbation of the reflux ratio in
column 1, xA

R2 is the molar purity of component A after the
perturbation of the reflux ratio in column 2, and xA

Q2 is the molar
purity of component A after the perturbation of the heat duty
of column 2. Notice that these last two perturbations do not
affect the molar purity of component A; therefore, the elements
of the second and third columns in the first row are zero. This
situation makes the solution of the mathematical problem easy.
In order to integrate design and control in multicomponent

distillation systems, in this work the design evaluation is
assumed to be done through the total annual cost estimation,
so that the total annual cost, TAC, and condition number, CN,
integrate design and control. The objective function that
includes the total annual cost and the condition number for the
distillation sequences can be mathematically expressed as in eq
4:

=Zmin {TAC; CN} (4)

= f N C R C h cTAC ( , , , , , )S d a a u o

σ σ= * *fCN ( , )

subject to

⃗ ≥ ⃗

⃗ ≥ ⃗

y x

w u

i i

i i

,PC ,PC

,FC ,FC (5)

The objective function indicates that the total annual cost
and the condition number are simultaneously minimized during
the optimization process; the total annual cost of a distillation
sequence depends on the number of stages NS, column
diameters Cd, area of condensers Ca, area of reboilers Ra,
heating utilities hu, and cooling utilities co, whereas the
condition number relates the minimum singular value σ* and
the maximum singular value σ*. The objective function is
restricted to the fulfillment of the purity vectors and the molar

Figure 1. Studied distillation sequences: (a) DWDC, dividing wall
distillation column; (b) IDS, indirect distillation sequence; (c) DDS,
direct distillation sequence.
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flow rate vectors for the components in the mixture; e.g., the
values of the purities for the components obtained during the
optimization process yi⃗,PC must be either greater than or equal
to the specified values of purities for the components xi⃗,PC.
Furthermore, the molar flow rates w⃗i,FC obtained must also be
either greater than or equal to the specified values of the molar
flow rates u ⃗i,FC. The decision variables in the optimization
process for the studied distillation sequences (see Figure 1) are
eight variables among integer and continuous for the direct and
the indirect distillation sequence, namely the total number of
stages, Ns, feed stage, Fs, reflux ratio, r, and reboiler duty Qc of
each column. The dividing wall distillation column requires 11
decision variables among integer and continuous. These
variables are the following: total number of stages of the
prefractionator, Np, feed stage of the prefractionator, Fp, total
number of stages of the main column, Nc, liquid and vapor
interconnection stages Nl and Nv, respectively, stage of
withdrawal of sidestream product, Nw, vapor interconnection
flow rate, Vf, liquid interconnection flow rate, Lf, sidestream
product flow rate Sf, reflux ratio, rp, and heat duty of the column
Qp. It is important to notice that the dividing wall distillation
column has been modeled as the Petlyuk column;43−46

therefore, this is the reason for the existence of the variables
Nl and Nv.
The multiobjective optimization problem states an important

degree of difficulty so that a suitable optimization strategy must
be used. In this work, the multiobjective optimization hybrid
method has been used, namely the Multi-Objective Differential
Evolution with Tabu List algorithm (MODE-TL).30 In the
MODE-TL (see the flowchart given in Figure 2) a population
of NP individuals is randomly initialized inside the bounds on
decision variables. Then, values of the objectives and
constraints are calculated for each individual of the initial
population. The TLS (tabu list size) is half the population size,
and the tabu list (TL) is randomly filled with 50% individuals of
the initial population; initial individuals are also identified as
target individuals (i). A trial individual is generated for each
target individual by mutation and crossover on three randomly
selected individuals from initial/current/parent population. The
elements of the mutant vector compete with those of the target
vector, with a probability Cr to generate a trial vector. A tabu
check is implemented in the generation step of the trial vector
of the MODE-TL,30,31 and the trial individual is generated
repeatedly until it is away from each individual in the TL by a
specified distance called the tabu radius (Tr). Euclidean
distance between trial individual and each individual in TL is
calculated in the normalized decision variable space for
accepting the trial individual. After that, objectives and
constraints are calculated for the temporarily accepted trial
individual. The trial individual is stored in the child population
and added to TL. After generating the trial individuals for all
the target individuals of the current population, nondominated
sorting of the combined current and child populations followed
by crowding distance calculation, if required, is performed to
select the individuals for the next generation (G).30,31 The best
NP individuals are used as the population in the subsequent
generation. For further details about the MODE-TL, the reader
is referred to the work by Sharma and Rangaiah.30

The implementation of the global optimization approach
involved a hybrid platform which linked Aspen Plus, Microsoft
Excel, and Matlab through the implementation of a COM
technology (see Figure 3). During the optimization process, a
decision vector of design variables is sent from Excel to Aspen

Plus; in this process simulator rigorous calculations for the data
that identify a particular design of the distillation systems are
obtained (e.g., temperature profile, molar composition profile,
molar flow profile, etc.) via resolution of phase equilibria along
with the complete set of MESH equations by using the Rad
Frac module. These data are returned from Aspen Plus and
stored in Excel; perturbations are applied on the manipulated
variables and new simulations are executed. After these
simulations are completed, the differences among the
components’ molar purities in the nominal state and the
components’ molar puritines after the perturbations are
estimated. These data along with the necessary data to estimate

Figure 2. Flowchart of the used multiobjective algorithm.

Figure 3. Hybrid platform to implement the multiobjective
optimization approach.
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the total annual cost are sent from Excel to Matlab. In this
software, the calculation of both objective functions is carried
out, the values obtained for the objective functions are returned
to Excel, and new vectors of design variables are generated
according to the stochastic procedure of this method. For the
optimization process, in this study the values for the parameters
associated with the used MODE-TL30 algorithm are the
following: population size (NP), 200 individuals; generations
number (GenMax), 200; tabu list size (TLS), 100 individuals;
tabu radius (Tr), 2.5 × 10−6; crossover fractions (Cr), 0.8;
mutation fractions (F), 0.6. These values were obtained from
the literature.30

3. CASE STUDIES
In this study three ternary mixtures containing hydrocarbons
(Table 1) with representative values of the ease of separation

index (ESI) as defined by Tedder and Rudd47 with three feed
compositions (Table 2) were selected in order to study the

influence of the separation difficulty of the two main splits for
ternary mixtures on the simultaneous design and control
approach. The feed flow rate was 100 kmol h−1 as saturated
liquid, and the specified purities for the product streams were
assumed to be 98.7, 98, and 98.6 mol % for A, B, and C,
respectively. The design pressure for each separation was
chosen to ensure the use of cooling water in the condensers.
Since the feeds involve hydrocarbon mixtures, the Chao−
Seader correlation was used for the prediction of the
thermodynamic properties. This model is usually recommen-
ded for petrochemical plants operating at low or medium
pressure.48,49 On the other hand, the distillation sequences
studied are shown in Figure 1.

4. RESULTS
This section presents the results of the multiobjective
optimization method. All the runs were performed on an
Intel Core i7-4790 CPU@3.6 GHz, 12 GB computer. The
computing time required to obtain the Pareto optimal solutions
varied according to the mixture and the distillation sequence:
on average each run of the DDS and each mixture and each
feed composition required 75.8 h, each run of the IDS and each
mixture and each feed composition required 70.5 h; whereas

each run of the DWDC and each mixture and each feed
composition required 87.5 h. The estimation of the total annual
cost was done through the utilization of the modular
method50,51 and the available equations in the publication by
Turton et al.52 Moreover, in a subsequent stage of the
optimization process, calculations of the Eco-indicator 99 have
been carried out for each of the optimum distillation sequence
designs in order to quantify the environmental impact;
therefore, the Eco-indicator 99 is not an objective in the
optimization process. In the Eco-indicator 99 method each
impact category is evaluated according to the individual
scores;53 this method has been used for environmental impact
quantification purposes of several chemical processes.54−56

The Pareto optimal solutions for mixture 1 with ESI = 1.07
and feed compositions 1, 2, and 3 are shown in Figure 4. It is

possible to determine that, for all the feed compositions, the
dividing wall column (DWDC) offers most of its designs with
lower condition number values compared with the CN values
of the designs for the direct sequence (DDS) and the indirect
sequence (IDS). Therefore, the DWDC shows the best control
properties in all the feed compositions. Nevertheless, the
compromises between both objectives, TAC and CN, can be
established for all the sequences in this mixture. For example,
for feed composition 1, the IDS shows some of its designs with
TAC slightly lower than the DWDC, and also the IDS offers
most of their designs with lower TAC with respect to the direct
sequence. For practical purposes, the DWDC provides good
designs with CN values between 150 and 200 and TAC values
from $600,000 to $700,000. On the other hand, for feed
composition 2, the DDS provides good designs with the lowest
TAC in comparison with the IDS and the DWDC but this last
offers most of its designs with CN under a value of 100, so the
DWDC presents the best control properties. However, most of
these designs have a greater TAC compared with the designs of
the IDS; nevertheless the IDS offers many of the designs with
the highest values of CN. For composition 3, the DDS offers
the designs with the best TAC compared with the IDS and the
DWDC. However, the DDS shares designs with similar CN
values with the IDS but none of these design sequences are
better in control properties than the DWDC. In general, the
DWDC offers designs with good control properties for all the

Table 1. Mixtures Analyzed

mixture component αA,B αB,C ESI

M1 n-propane (A) 3.28 3.05 1.07
n-butane (B)
n-pentane (C)

M2 2-methylpropane (A) 1.36 3.05 0.44
n-butane (B)
n-pentane (C)

M3 n-butane (A) 2.38 1.28 1.85
2-methylbutane (B)
n-pentane (C)

Table 2. Feed Composition for Each Mixture

feed composition molar composition

C1 A = 0.3, B = 0.3, C = 0.4
C2 A = 0.3, B = 0.4, C = 0.3
C3 A = 0.4, B = 0.3, C = 0.3

Figure 4. Pareto front for mixture 1 and feed compositions 1−3.
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feed compositions of mixture 1, but the designs with the best
TAC are spread between the IDS and the DDS. Therefore,
multiple designs show the compromises between the TAC and
CN. Table 3 shows the design variables of the distillation
sequences that exhibit the lowest CN and TAC values of each
design for all the feed compositions. These designs are taken
from the curve zone of the Pareto optimal solutions shown in
Figure 4. It is important to note that the dividing wall
distillation column has been modeled as the Petlyuk column;
the depiction of the sections and the determination of the
number of stages for each of these sections are explained
precisely in this modeling.57 For example, the number of stages
of section 3 contains the stages from the top of the main
column to the liquid flow rate interconnection stage, whereas
section 6 contains the number of stages from the bottom of the
main column to the vapor flow rate interconnection stage. On
the other hand, the number of stages for section 4 is
determined by counting the existing stages from the liquid
flow rate interconnection stage to the sidestream product flow
rate stage of the main column. Finally, the number of stages for
section 5 contains the stages from the sidestream product flow
rate stage to the liquid flow rate interconnection stage.
Values of the energy consumption, Q, of the optimal designs

are shown in Figure 5; it is possible to link the energy
consumption of each design and its control properties in this
figure. It should be noticed that the DWDC offers significant
energy savings for feed compositions 2 and 3. This behavior of
the DWDC has been reported in sequential methodologies for

design and control, where there was stated that the DWDC
offers significant energy savings with respect to the conven-
tional distillation arrangements.58,59 The Eco-indicator 99 and
the CN values for the optimal designs are presented in Figure 6.
According to these results it is possible to identify the designs
for the distillation sequences that show the lowest and largest
environmental impacts, so it is also possible to establish the

Table 3. Design Variables of the DDS, IDS, and the DWDC for Mixture 1 and Feed Compositions 1−3

DDS IDS DWDC

C1 C2 C1 C2 sections 1 and 4 sections 2 and 5 section 3 section 6

Feed Composition 1
no. of stages 21 40 22 22 14 5 18 12
feed stage 17 35 13 16 − 32 − −
reflux ratio 6.8 5.7 1.7 4.1 − − 9.9 −
top pressure, bar 15 8 10 16 − − 16.3 −
diameter, m 0.77 0.74 0.74 0.6 − − 1.3 −
sidestream stage − − − − 29 − − −
reboiler duty, kW 572.13 390.44 598.69 361.44 1333.75
CN 220.3 236.1 147.6
TAC 664 312.9 581 434.6 610 647.1

Feed Composition 2
no. of stages 19 18 25 20 24 6 18 3
feed stage 12 12 21 18 20 − − −
reflux ratio 3.2 1.5 1.3 2.5 − − 4.6 −
top pressure, bar 15.8 4.7 9.3 9.3 − − 16 −
diameter, m 0.64 0.69 0.73 0.45 − − 1.3 −
sidestream stage − − − − 28 − − −
reboiler duty, kW 496.58 394.46 767.66 370.9 679.58
CN 120.3 161.2 87.7
TAC 512 184.6 629 376.9 689 391.9

Feed Composition 3
no. of stages 17 16 17 23 14 6 12 9
feed stage 8 12 13 20 − − 12 −
reflux ratio 2.1 2.03 2.2 1.6 − − 3.5 −
top pressure, bar 16 4.8 15.9 15.9 − − 15.9 −
diameter, m 0.7 0.55 1.1 0.57 − − 1.7 −
sidestream stage − − − − 18 − − −
reboiler duty, kW 515.01 324.85 770.04 383.74 718.61
CN 121.1 141.7 78.9
TAC 487 068.7 609 857.8 538 032.1

Figure 5. Energy consumption and condition number for mixture 1
and feed compositions 1−3.
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relationships between the control properties of the designs and
the environmental impact.
The second mixture with ESI = 0.44 contains two linear

hydrocarbons and one isomer; three feed compositions were
also studied. This mixture states a difficult separation task
between two components. For example, for the ternary mixture
A, B, C (see Table 1), the values for the relative volatilities of
two adjacent components are very close. These components are
2-methylpropane and n-butane; therefore, the difficult separa-
tion task is found in the split A/B. This mixture has been
included in order to study the effect of the separation task A/B
on the design and control integration approach. Figure 7 shows

the Pareto optimal solutions obtained for this mixture.
Interesting results may be found for this mixture: in the feed
composition 1, the DDS offers the designs with the best CN
values, the DWDC shows the intermediate best designs with
respect to the CN, and the IDS offers the designs with the
poorest control properties. In terms of cost, the DWDC
presents the designs with low TAC while the DDS and the IDS
offer designs with similar TAC. The behavior of the sequences
for feed composition 2 allow determining that the DDS shows

the designs with the best CN, while the DWDC and IDS
contain designs with similar CN; with respect to the TAC, the
DWDC presents the best designs and the IDS and DDS offer
designs with similar TAC. In feed composition 3, the DWDC
and the IDS are the sequences that offer the designs with the
low CN values and the DDS shows the designs with the highest
CN. The DWDC presents many of its designs with the lowest
TAC. In general, for this mixture the DDS offers good designs
with low CN while the DWDC shows the designs that provide
the lowest TAC and the IDS presents the designs that may
compensate both objectives, being this sequence the one that
does not provide designs as good as the DWDC and the DDS.
The energy consumption for the optimal solutions and the

relationships with the condition number values are shown in
Figure 8. It is clear to see that the DWDC presents designs that

provide substantial energy savings with respect to the IDS and
DDS. Moreover, Figure 9 shows the Eco-indicator 99 values for
the optimal designs; these results are consistent with the energy
consumption results as this factor is one of the individual
categories that has a larger impact in the Eco-99 methodology.
Therefore, the DWDC offers the designs with the minimum
Eco-indicator 99 values for all the feed compositions, while the
DDS shows the designs with intermediate Eco-indicator 99
values and the IDS provides the designs with the largest Eco-
indicator 99 values.
The third mixture with ESI = 1.85 states a difficult task

represented by the split B/C in order to separate 2-
methylbutane and n-pentane, because the relative volatilities
of these components are very close. The Pareto optimal
solutions for this mixture and all the feed compositions are
shown in Figure 10. It is clear to see that the DWDC offers the
designs with the best CN; in other words, good control
properties are exhibited by these designs. In addition, the TAC
values of the DWDC are significantly lower than the TAC
values of the IDS and the DDS. On the other hand, it is

Figure 6. Eco-indicator 99 and condition number for mixture 1 and
feed compositions 1−3.

Figure 7. Pareto front for mixture 2 and feed compositions 1−3.

Figure 8. Energy consumption and condition number for mixture 2
and feed compositions 1−3.
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possible to establish the compromises between the TAC and
the CN for all the designs of the DWDC, the IDS, and the
DDS. Figure 11 shows the energy consumption of each design
of the Pareto optimal solutions; it is possible to establish that
the DWDC shows considerably lower energy consumption
than the IDS and the DDS for all the feed compositions. In
addition, the Eco-indicator 99 values of each design are
presented in Figure 12 so that these results are consistent with
the energy requirements; therefore, the DWDC offers the
designs with the lowest environmental impact.
The obtained results in this simultaneous design and control

approach show that most of the designs of the DWDC for all
the mixtures and for each feed composition exhibit better
control properties than the IDS and the DDS; this behavior
(i.e., the thermally coupled distillation column shows good
control properties) has also been documented in previous

sequential methodologies for design and control of distillation
systems for the separation of ternary mixtures.60−62 This fact is
attributed to the internal interconnections of liquid and vapor
in the DWDC and because the remixing of streams is avoided,
so the system is less unstable because the gradients in the
concentration of species in the mixture tend to be minimized in
some regions of the column. In addition, the DWDC shows the
designs with the lowest energy consumption, which is
consistent with the fact that the existence of internal
interconnections favors this condition. In order to summarize
the results of this study, Table 4 shows a representation of the
results, which has been done through a visual inspection of the
Pareto optimal solutions.
The summary of the results for each ESI value can be stated

as follows:
Mixture 1 with ESI ≈ 1. The results show that for this ESI

value and all the feed compositions there is no highlighted
distillation sequence but the designs with low TAC values are
spread among the IDS, the DDS, and the DWDC. On the other

Figure 9. Eco-indicator 99 and condition number for mixture 2 and
feed compositions 1−3.

Figure 10. Pareto front for mixture 3 and feed compositions 1−3.

Figure 11. Energy consumption and condition number for mixture 3
and feed compositions 1−3.

Figure 12. Eco-indicator 99 and condition number for mixture 3 and
feed compositions 1−3.
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hand, the DWDC offers the designs with the best condition
number values.
Mixture 2 with ESI < 1. This ESI value tends to favor the

designs for the DWDC with respect to the TAC for all the feed
compositions. Moreover, it can be established that the DDS
shows the best CN values for the majority of the feed
compositions.
Mixture 3 with ESI > 1. The DWDC offers for all the feed

compositions the best designs in terms of the TAC and CN
values; this ESI value favors considerably the thermally coupled
distillation column.
In general, it can be established that the control properties

and the total annual cost (where the design variables of the
process are associated) are variables in competition. Some
authors63 have established that in distillation columns the
designs with the minimum operational costs exhibit the worst
control properties and as the designs move away from the
optimum total annual cost the control properties are improved.
It has been explained due to that, in the optimal design for the
total annual cost, the design variables are restricted and it can
be unfavorable for the dynamic behavior of the distillation
column. This is observed in the Pareto optimal solutions
obtained in this work.

5. CONCLUSIONS

This paper has introduced a multiobjective optimization
approach that integrates the design and control of multi-
component distillation sequences. Three distillation sequences
and three hydrocarbon mixtures with representative ease of
separation indexes and three feed compositions were studied.
As reported in previous sequential methodologies that have
evaluated the design and control, it has been found in this
approach that the dividing wall distillation column exhibits
better control properties than the conventional separation
systems. Moreover, the results offer the trade-offs between the
control properties and the design illustrated through the Pareto
optimal solutions that enable selection of the solutions for all
the sequences that establish the proper balances between both
objectives. In addition, the environmental aspects of the
designs, in particular their environmental impacts together
with their control properties, can be established.

■ APPENDIX A. DETAILS FOR THE CALCULATION OF
TAC

In this work, the total annual cost of each sequence has been
estimated as follows:

= +TAC
capital cost

time of investment
operating cost

In the case of the DWDC, this has been modeled as its
thermodynamically equivalent the Petlyuk column, and the
estimation of the capital cost of the DWDC has been carried
out by determining the summation of the cost of the
prefractionator and the main column. Specifically, the capital
cost of each sequence was calculated by using the modular
method50,51 and the equations and parameters found in the
publication by Turton et al.52 The material for all the
equipment was established as carbon steel, and 10 years for
the time of investment was considered. The operating cost
includes cooling and heating utilities, and 8400 h of yearly
operation for each sequence was considered. Furthermore, low-
pressure steam (6 bar, 87 psia, 160 °C/320 °F) with a cost of
$7.78/GJ, electrical energy with a cost of $16.8/GJ, and cooling
water received at 20 °C and returned at 30 °C with a unit cost
of $0.72/GJ as utility have been considered.64
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■ NOMENCLATURE
DSM1F1 = direct distillation sequence mixture 1 feed
composition 1
ISM1F1 = indirect distillation sequence mixture 1 feed
composition 1
DWM1F1 = dividing wall distillation column mixture 1 feed
composition 1
DSM1F2 = direct distillation sequence mixture 1 feed
composition 2
ISM1F2 = indirect distillation sequence mixture 1 feed
composition 2
DWM1F2 = dividing wall distillation column mixture 1 feed
composition 2
DSM1F3 = direct distillation sequence mixture 1 feed
composition 3

Table 4. Summary of the Obtained Results

TAC CN, γ Q (kW) Eco-99

mixture 1, ESI ≈ 1
C1 DDS > DWDC > IDS IDS > DDS > DWDC DWDC > DDS > IDS DWDC > DDS > IDS
C2 DDS > IDS > DWDC IDS > DDS > DWDC IDS > DDS > DWDC IDS > DDS > DWDC
C3 IDS > DWDC > DDS IDS > DDS > DWDC IDS > DDS > DWDC IDS > DDS > DWDC

mixture 2, ESI < 1
C1 IDS > DDS > DWDC IDS > DWDC > DDS IDS > DDS > DWDC IDS > DDS > DWDC
C2 IDS > DDS > DWDC IDS > DWDC > DDS IDS > DDS > DWDC IDS > DDS > DWDC
C3 IDS > DDS > DWDC IDS > DDS ≈ DWDC IDS > DDS > DWDC IDS > DDS > DWDC

mixture 3, ESI > 1
C1 DDS > IDS > DWDC DDS > IDS > DWDC DDS > IDS > DWDC DDS > IDS > DWDC
C2 IDS > DDS > DWDC IDS ≈ DDS > DWDC IDS > DDS > DWDC IDS > DDS > DWDC
C3 IDS > DDS ≈ DWDC IDS > DDS > DWDC IDS > DDS > DWDC IDS > DDS > DWDC
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ISM1F3 = indirect distillation sequence mixture 1 feed
composition 3
DWM1F3 = dividing wall distillation column mixture 1 feed
composition 3
xA
sp = molar purity of component A in the nominal state
xA
Q1 = molar purity of component A after perturbation of the
reboiler duty in column 1
xA
R2 = molar purity of component A after perturbation of the
reflux ratio in column 2
xA
Q2 = molar purity of component A after perturbation of the
reboiler duty in column 2
xB
sp = molar purity of component B in the nominal state
xB
Q1 = molar purity of component B after perturbation of the
reboiler duty in column 1
xB
R1 = molar purity of component B after perturbation of the
reflux ratio in column 1
xB
Q2 = molar purity of component B after perturbation of the
reboiler duty in column 2
xB
R2 = molar purity of component B after perturbation of the
reflux ratio in column 2
xC
sp = molar purity of component C in the nominal state
xC
R1 = molar purity of component C after perturbation of the
reflux ratio in column 1
xC
R2 = molar purity of component C after perturbation of the
reflux ratio in column 2
xC
Q2 = molar purity of component C after perturbation of the
reboiler duty in column 2
p = magnitude of perturbations on the manipulated variables,
0.5%
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